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Introduction                      1/4

Prognostics & Health Management (PHM)
Gaining importance in mission critical systems

Aerospace
Military
Commercial applications

Important for effective utilization and maintenance in CBM
PHM combines

Prognostic capability for estimation of remaining useful life 
(RUL)
Health management through informed decisions on operational, 
maintenance and logistics actions.
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Introduction                    2/4

Different approaches of prognostics include
dynamical systems approach,
data-driven prognostics,
the fusion of failure dynamics with diagnostic data
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Introduction                   3/4

Machine State prediction using a ‘Monitoring Index’
based on 

Time domain features
Frequency spectrum
Time-frequency domain features (wavelet transform)
Signal energy 

Energy Index (EI) 
Entropy
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Introduction 4/4

Different data-driven techniques include
Artificial neural networks (ANN)
Support vector machines (SVM)
Fuzzy Logic
Neuro-Fuzzy (NF) systems
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The present work

Compares time-series prediction capability of
Recursive Neural Network (RNN)
Adaptive Neuro-Fuzzy Inference System (ANFIS)
Support Vector Regression (SVR)

Using
training datasets 

sunspot activity 
Duffing oscillator response

Test dataset of a helicopter drivetrain gearbox
Entropy based feature through morphological signal 
processing (MSP)
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Morphological Signal Processing

It is based on set-theoretical method of nonlinear analysis called 
mathematical morphology (MM)
It involves extraction of signal shape and size features through
morphological operations, namely, erosion, dilation, opening and
closing using a simpler object termed as structuring element (SE) 
[22] .
Erosion: (1)
Dilation: (2)
Opening:   (3)
Closing:   (4)

Where Θ, ⊕,   and     denote the morphological operators for erosion, dilation, 
opening and closing respectively.  

,1J .. 2, 1, ,j g(j)],j)(f(i min  (i) g)  (f −∈−+=Θ 0

1J .. 2, 1, ,j g(j)],j)(f(i max  (i) g)(f −∈+−=⊕ 0

(i) g)  )g  f(( g)(i)  (f ⊕Θ=o

(i) g)  )g f(((i) g)  (f Θ⊕=•

   o •
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Multiscale Morphology Analysis

• Traditional MM used single-scale analysis with a SE of fixed scale (size) 
selected a priori based on the nature of the signal to be analyzed. 

• Very often it is not possible to have the prior knowledge for selecting the 
scale of SE in single-scale applications. 

• To overcome this shortcoming, multiscale morphological filters (MMF) along 
with pattern spectrum (PS) were proposed.

• SEs of scales (n=0,1,2,..N-1) are used for morphological analysis. 
• For a discrete-valued function g(j), j∈J, used as the basic SE, the function 

pattern can be defined as follows:

{ }⎩
⎨
⎧

=
⊕⊕⊕=

.00g
,times) (n  g...gggng (5)
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Pattern Spectrum 

For a nonnegative sampled signal, f(i), i∈I and a SE g, the pattern spectrum 
(PS) are defined as follows [24]:

The pattern spectrum contains useful qualitative information about the 
signal (f) relative to the SE (g). The lower part of PS manifests the 
roughness of f relative to g.  The degree of shape content of g in f is given 
as 

Nn0     ],g)n(fngf[S)n,g,f(PS ≤≤+−=+ 1oo

Kn     ],g)n(fngf[S)n,g,f(PS ≤≤−•−•=− 11

.                            

(6)

(7)

001 ≥∀≥+−= n     ]g)n(f[ S]ngf[S)n,g,f(PS oo

.

)f(S/)n,g,f(PS

∑=
i

)i(f)f(S
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Pattern Spectrum Entropy

The quantitative measure of shape-size complexity of a signal relative to a 
SE pattern can be obtained based on its PS in form of average roughness 
using information theory as follows:

∑
=

−=
N

n
)n(qlog)n(q)g/f(H

0

)f(S/)n,g,f(PS)n(q =

)Nlog(/)n,g,f(H)g/f(Hr 1+=
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Evolutionary Pattern Spectrum Entropy

A way of representing the variation over the period is to use its evolutionary 
average. In the present work, a similar index namely evolutionary average 
pattern spectrum entropy (aHr) at time (cycle) index p(>0), is introduced as 
follows:

∑
=

=
p

l
rr )l(H

p
)p(aH

1

1
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Time Series Prediction 

The value at r-time step ahead , xt+r

in terms of  values previous steps: 
xt-mr, xt-(m-1)r, … xt-r, xt

xt+r= φ(xt-mr, Xt-(m-1)r, Xt-(m-2)r,…xt-3r, xt-2r,xt-r, xt),  m,r > 0

Techniques used :
RNN
ANFIS
SVR
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Machine Condition Prognosis

Monitoring Index
Characterizing the fault progression

Type of faults considered
Gear tooth failure 

for a helicopter drivetrain gearbox (US Navy) 
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Results and Discussions

Training dataset
Normalized dataset of sunspot activity (1700-2005)
Duffing oscillator

Test dataset-gear tooth failure 
Signal preprocessing
Pattern spectrum extraction
Evolutionary average entropy

(monitoring index)
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Fig. 2.  Preprocessed vibration signal of a helicopter drivetrain gearbox [18]
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Extraction of Monitoring Index for Prognosis

0 4 9 14
0

5

10

15

20

25

30

Scale (n)

P
at

te
rn

 s
pe

ct
ru

m
 a

m
pl

itu
de

 

 

t=0 hrs
t=19 hrs 15 mins
t=21 hrs 15 mins
t=21 hrs 30 mins

Fig.3. Pattern spectrum of residual signals
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Fig.4. Evolutionary average pattern spectrum entropy 



CIDU2008, 9/9-10/2008 18

1700 1800 1900 2000
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Year

N
or

m
al

iz
ed

 s
un

sp
ot

 d
at

a

 

 

Actual
Predicted
Prediction error

(a)

Training Results (Sunspot data) 
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Fig. 5. Training results for sunspot 
activity data [26], (a) RNN, (b) ANFIS, 

(c) SVR.

(c)
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Fig. 6.  Training results of Duffing oscillator response (a) RNN, (b) ANFIS   and SVR.

Training Results (Duffing oscillator)
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Prediction Comparison
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Fig. 7.  Test results for gear failure 
prognostics using training dataset of 
sunspot activity (a) RNN, (b) ANFIS, (c) 
SVR
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Prediction Comparison

0  4 8 12 16 20 24
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time (hours)

N
or

m
al

iz
ed

 m
on

ito
rin

g 
in

de
x

(a)

 

 

Actual
Predicted
Prediction error

0  4 8 12 16 20 24
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time (hours)

N
or

m
al

iz
ed

 m
on

ito
rin

g 
in

de
x

(b)

 

 

Actual
Predicted
Prediction error

Fig. 8.  Test results for gear failure prognostics using training 
dataset of Duffing oscillator (a) RNN, (b) ANFIS and SVR.
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Comparison of Prediction Performance

TABLE I Prediction Results for Gear Pattern Spectrum Evolutionary Average Entropy Index 

0.425×10-30.702 × 10-32014.20.341 ×10-30.0231430.4SVR

0.413× 10-30.834 × 10-40.40.0280.01725.5ANFIS

0.0070.029113.00.0400.09999.2RNN

Test RMSETraining 
RMSE

Training 
time (sec)Test RMSETraining 

RMSE
Training 
time (sec)

Training with Duffing oscillatorTraining with sunspot data

Method
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Conclusions

The work proposed a novel entropy based feature as a ‘monitoring index’
using morphological signal processing. 
It presented comparison of 3 predictors: RNN, ANFIS and SVR. 
It illustrated the procedure through a helicopter drivetrain gearbox 
dataset. 
Training based on Duffing oscillator response gave better results than 
using sunspot data for all 3 predictors.
Comparable training performance of ANFIS and SVR  
Test performance of SVR was found to be better than ANFIS and RNN 
using sunspot data.
The training time of SVR was much higher than ANFIS.
When trained with Duffing oscillator response, test results of ANFIS and 
SVR were similar. 
Results show the effectiveness of the predictors in estimating the 
variations of the monitoring index.
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Future Work

Extension to multi time step ahead prediction.
The potential application of these techniques for development of
on-line prognostic systems for machine condition need further 
work. 
Validation of the techniques using a wider data base 
Integrated model development combining data-driven results 
with physics-based approach for better understanding of the 
process. 
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